AVR controlled RF light switches
From Just in Time
Although the Cheapest ever 433 Mhz transceiver for PCs still functions in all its ugliness, there are some things left to be desired in this solution. Particularly, the system needs a PC or Beaglebone/Raspi running for control of the light switches.
I'd like the simpler devices in my home to communicate with each other with only optionally a more initelligent controller in between. I'm working on a "multi-media" bus protocol for my devices (working title: ThingBus) that would work on TCP/IP, UDP, serial ports and through cheap NRF24L01+ transceivers. As a first use case I'm now trying to control the RF switches from an AVR that will listen to NRF24L01+ messages.
It would be silly to have the AVR store the audio samples that were created in the 433Mhz transceiver solution. We need to somehow describe the protocol in a more compact way. This page describes that way.
Signals
The image below shows an Audacity screenshot of an audio card capture of the signal of one RF remote. A few things stand out in this signal:
- It seems to consist of only two types of pulses: wide and narrow. All wide pulses have the same duration and the same is true for the narrow pulses.
- The rising edges of the pulses in this signal are evenly spaced in time (measured in Audacity to be approximately 33 samples or 750μs )
- There are 25 pulses in this signal and (not visible in this image) the same train of pulses repeats after some 6ms.
So far, so good. It seems that we can represent this signal in 25 bits, where we have to choose whether the long pulses map to a 0-bit or a 1-bit.
Unfortunately, not all RF transmitters are created equal. Below is an image of the signal another no-brand RF transmitter:
This signal also appears to have only two types of pulse. What's different in this signal:
- It's not the rising edges that are equidistant, it's the falling edges.
- The pulses are a lot slower, the distance between falling edges is about 2090μs and the pulse trains are some 80ms apart.
- There seem to be only 20 pulses (bits) in this signal.